TCSSA  DTCSSA  TCSSB  DTCSSB  

NTL  t < t′  t_{min} ≤ t′ ≤ t_{max}  t′ ∈ {t_{1}, t_{2},⋯, t_{N}} (0 < t_{i + 1} − t_{i} < t_{1})  t′ ∈ {t_{1}, t_{2},⋯, t_{N}} 
NCP  t′ − t + 1  1  N  1 
NRP  $\frac{{t}^{\prime}t+2}{2}$  1  $\frac{N+1}{2}$  1 
SSS  (t′ − t + 1) log q  log q  N log q  log q 
BCS  log q  log q  $\frac{N+1}{2}logq$  (n + 1) log q 

TCSSA  DTCSSA  TCSSB  DTCSSB  

NTL  t < t′  t_{min} ≤ t′ ≤ t_{max}  t′ ∈ {t_{1}, t_{2},⋯, t_{N}} (0 < t_{i + 1} − t_{i} < t_{1})  t′ ∈ {t_{1}, t_{2},⋯, t_{N}} 
NCP  t′ − t + 1  1  N  1 
NRP  $\frac{{t}^{\prime}t+2}{2}$  1  $\frac{N+1}{2}$  1 
SSS  (t′ − t + 1) log q  log q  N log q  log q 
BCS  log q  log q  $\frac{N+1}{2}logq$  (n + 1) log q 
TCSSA  DTCSSA  TCSSB  DTCSSB  

NTL  t < t′  t_{min} ≤ t′ ≤ t_{max}  t′ ∈ {t_{1}, t_{2},⋯, t_{N}} (0 < t_{i + 1} − t_{i} < t_{1})  t′ ∈ {t_{1}, t_{2},⋯, t_{N}} 
NCP  t′ − t + 1  1  N  1 
NRP  $\frac{{t}^{\prime}t+2}{2}$  1  $\frac{N+1}{2}$  1 
SSS  (t′ − t + 1) log q  log q  N log q  log q 
BCS  log q  log q  $\frac{N+1}{2}logq$  (n + 1) log q 
onu »
xvideo xx 625x
xvideo xx 665
xvideo xx l61
xvideo xx 661f
xvideo xx 6y5
xvideo xx 695
xvideo xx 661f
xvideo xx 665r
xvideo xx 113f